
Repairing corrupted JPEG images
with JPEG visual repair tool

by Alberto Maccioni

This tutorial describes how to correct JPEG images that exhibit various data corruption artifacts; a
short introduction to JPEG compression and corruption effects is available in chapters 3 and 4.

JPEG visual repair tool can load JPEG images while preserving MCU (Minimum Coded Unit)
coding data and allows editing at MCU level.

It is written in JavaScript and resides in a single html document; it can be simply s aved for offline
use, there are no library dependencies. It is based on jpeg-decomp.

Using it you can:

 view image info

 delete, insert, copy, paste MCUs

 change DC level of each MCU

 view the image as RGB, Y, Cb, Cr

 automatically fix color differences

 view MCU pixel levels, coefficients, and binary data-stream

Here the main window after loading an image:

Repairing corrupted JPEG images – V2.1 – Sep-23 1/18

Selected MCU and
enlargement Image info

https://github.com/albmac/jpeg-decomp
http://www.github.com/jpegvisualrepair

Controls:

 mouse wheel→zoom image

 left click→select MCU; a black or white rectangle appears on selected MCU

 shift+left click→extend selection

 left button drag→drag image

 right click→select MCU for color fixing; a red rectangle appears on selected MCU

 right button drag→extend selection for color fixing

 ctrl-c→copy selected MCUs

 ctrl-v→paste before selected MCU

 ctrl-z→undo last operation

 arrows→change selected MCU

 del→delete MCU

 i→open MCU info dialog

 s→shift MCU rendering using left/right keys

 1-2-3-4→change view (RGB, Y, Cb, Cr)

A crossed red rectangle appears on MCUs that produced decode errors.

Fix colors
This function changes the DC coefficients in the selected MCU (for Y, Cb, Cr sub-blocks) in order
to minimize the color difference with respect to the corresponding MCU in the previous line.

Top and bottom row of pixels are considered; for example, in the picture below, the minimization
area is circled in red:

Restart markers
Additional functions are enabled after loading images with restart markers; it is possible to show the
marker number over the image and set the RST marker value to any number:

Repairing corrupted JPEG images – V2.1 – Sep-23 2/18

MCU back search
Experimental function: starting from the selected MCU, scans backwards to find all possible MCU
combinations that end exactly at the selected one; the desired combination can be inserted in the
image.

Limitations
The current version lacks support for the following JPEG features:

 progressive scan

 arithmetic encoding

Repairing corrupted JPEG images – V2.1 – Sep-23 3/18

Example of image repair
An example of repair flow is described here, applied to the following image:

 This is how it appears to the file explorer and most image viewers.

Let’s load it into JPEG visual repair tool:

Notice how corruption starts in the circled area; other corruption points can be seen further down,
but DC level corruption makes it hard to exactly locate them. 15425 MCUs were found instead of
the original value of 15360; extra ones are a consequence of data corruption and contain wrong
information.

Repairing corrupted JPEG images – V2.1 – Sep-23 4/18

Now zoom-in around the first point:

several extra MCUs are present so the rest of the image is not aligned; it is necessary to select bad
MCUs (it’s easy to see that they don’t hold real image info) and delete them. Press s and use
left/right keys to shift the region past the selected MCU until features come into alignment; notice
that the status text informs you of how much the region is shifted:

Press s again and select the same amount of bad MCUs; delete them. Now features are aligned:

Don’t worry about colors: they will be fixed later.

Proceed with the next corruption point; select one of the dark MCUs and click Extra MCU info:

That DC level at -1631 looks really low, that’s why the MCU appears black; it is the result of -654
as DC coefficient (remember that a DC coefficient is relative to the previous DC level).

This is almost certainly a bad MCU, it can be deleted along with a few others around it.

Repairing corrupted JPEG images – V2.1 – Sep-23 5/18

After removing MCUs that have extreme DC coefficients, colors and detail reappear on subsequent
MCUs. Follow the alignment procedure until the whole line appears to be in the original position:

Next we can focus on getting some details back, as the colors are too saturated to allow aligning
effectively. MCU 6081 is a good candidate: it has a decoding error (is red crossed) and colors
change dramatically within it; let’s examine it in detail:

As expected, one of the Y blocks has a suspiciously high DC coefficient that causes a high
brightness value; it has to be deleted.

Much better now! Details are back and we can once again align MCUs against the previous line:

Repairing corrupted JPEG images – V2.1 – Sep-23 6/18

Sometimes it’s easy to spot missing alignments, especially at an image border:

Deleting those 9 MCUs shifts the rest into perfect alignment:

Other than deleting MCUs, another way of correcting extreme brightness is by changing the DC
level manually. You have first to select a single channel view, typically Y:

Repairing corrupted JPEG images – V2.1 – Sep-23 7/18

Now the DC+ and DC- buttons are enabled; we can try increasing by 200 until satisfied with the
brightness:

A combination of the techniques described above can be used to roughly correct brightness and
align the entire image:

Color correction
Although it would be possible to manually change DC level in order to reduce color differences,
using the Fix colors function achieves the same results much faster.

Color fixing is performed MCU by MCU, minimizing color difference between the top pixels row
and the bottom row of the corresponding pixels in the previous line.

Select MCU by right clicking or dragging with the right button, then click on Fix colors.

MCUs that are clearly damaged should be selected because their DC coefficients are likely bad;
however, an area with undamaged MCUs (i.e. with plausible details that continue across
boundaries) only requires correction on the first MCU: the rest have the right amount of DC shift.

Repairing corrupted JPEG images – V2.1 – Sep-23 8/18

Below an example of Fix colors, before and after:

Yet another example:

Repairing corrupted JPEG images – V2.1 – Sep-23 9/18

After applying the same procedure to all affected areas, this is the result:

Repairing corrupted JPEG images – V2.1 – Sep-23 10/18

Refinements
Although Fix colors usually does a good job of minimizing color differences, there are some cases
in which color bands are still visible; when this happens it is necessary to change DC level
manually.

Switch to a component view, like channel Y, and examine the image: find the exact origin of
banding.

Here an enlarged view:

Playing with DC+, DC-, and the selected amount, it is possible to reduce the banding effect:

Repairing corrupted JPEG images – V2.1 – Sep-23 11/18

The same thing should be done for the other channels, Cb and Cr:

In the end the image will appear correct on most of the area:

After saving, a final touch with a standard image editing program will correct the remaining
artifacts due to damaged MCUs.

Repairing corrupted JPEG images – V2.1 – Sep-23 12/18

Further advice
It is often possible to read the same file from damaged media using different tools; multiple
versions may differ and be damaged in different areas. Open all versions in different tabs (just
select all of them in the open file dialog); combine good regions by using copy and paste MCU.

Anyways, never delete the original damaged file; a new tool may come up in the future that is able
to correct even more errors.

Repairing corrupted JPEG images – V2.1 – Sep-23 13/18

(Essential) Introduction to the JPEG format
JPEG images are generated from bitmap images by removing some amount of detail according to a
quality setting. This operation is performed on elementary blocks of 8x8 pixels.

Essentially, pixel data is transformed into frequency coefficients in a process known as 2D DCT;
these coefficients are reduced in size in a way that preserves the perceived quality, then stored in a
compressed form.

How exactly this is done is not essential for our purpose, however we have to understand a few
additional details:

 pixels are first transformed from RGB to YCbCr; this means that luminance (Y, i.e. the gray
scale representation) is coded separately from chrominance (Cb&Cr, i.e. color information).

 Y and C can be (and often are) sampled at a different resolution; that’s because the human
eye is more sensitive to luminance than chrominance. So the image is further subdivided in
Minimum Coded Units comprising a certain amount of Y and C blocks, usually with more
Y than C.

Example: YYYYCbCr; this has 4 times as many Y as Cx; so the MCU is 2x2 blocks or
16x16 pixels, with full Y data and Cb/Cr sub-sampled at ½ the resolution in width and
height. Other schemes are also possible.

 Y and C blocks are stored as a list of coefficients, with the first one, the DC coefficient,
depending from the DC of the previous block; in fact it is coded as the increment from the
previous one. Note that DC levels are chained per-component: all Y depend from each-
other, all Cb together, all Cr together as well.

 Coefficients are compressed using Huffman coding (also rarely Arithmetic coding),
resulting in strings of bits of any size. This means that it’s not easy to understand where one
coefficient ends, and also that editing cannot be done byte by byte. That is the reason why in
general a hex editor is not useful for modifying or correcting an image.

 The layout of a JPEG image is divided into sections, separated by markers that are byte-
aligned and begin with 0xFF. Each describes an aspect of the image, like size/organization,
EXIF data, quantization tables, compression tables, etc. Stream data (the variable bit
coefficients that represent the image) could also contain bytes at 0xFF, in which case a 0x00
byte is appended (this is called bit stuffing).

 In order to increase robustness against data loss, some images make use of Restart Markers.
These markers are inserted every N MCU (a configurable number), and signal a break in the
DC level chain; the subsequent block will code its DC level as a pure number and not as a
delta with respect to the preceding block. In this way, any DC error will propagate at most
up to the next restart marker.

There are may more details that are outside the scope of this guide and not essential for our purpose;
they are nonetheless very interesting; here some links:

Repairing corrupted JPEG images – V2.1 – Sep-23 14/18

https://en.wikipedia.org/wiki/JPEG

www.impulseadventure.com/jpeg-compression (from WebArchive, as it recently went offline)

JPEG image corruption
Image corruption has always been present, but lately it is becoming more common for a number of
reasons: a lot more pictures are generated today; pictures are getting larger; storage media is often a
memory card, which is inherently less reliable than an HDD or SSD.

Examples of JPEG image corruption: false colors, misalignment, missing sections.

Notice that corruption starts at a precise point in the XY scan, and proceeds from there until the
end; frequently more than one corruption point is present.

Bit errors are often localized in a small area of the image file; not all bits and bytes are affected; as
an example, below a comparison between a corrupted file and the original version.

There is a certain probability that changing even a single bit in the stream, a compression code
prefix (Huffman code) is changed; the resulting code may signal a different bit length than the
original one, therefore not only that coefficient is affected, but also the subsequent one, and so on.

Fortunately it is very common that at some point after the error, and it may be many blocks down

Repairing corrupted JPEG images – V2.1 – Sep-23 15/18

http://www.impulseadventure.com/jpeg-compression
https://en.wikipedia.org/wiki/JPEG

the line, the decoding process recovers the correct coefficient ordering; I don’t know the reason, it’s
probably some kind of mathematical property of the Huffman coding.

Anyways, between the error occurrence and the recovery point we are left with a certain number of
blocks that show more or less random coefficient values; the interpretation of this data by the
decoding algorithm may lead to various artifacts.

DC level errors
These are due to the fact that a DC coefficient is expressed as variation with respect to the previous
one; therefore, once a DC coefficient is corrupted, all subsequent blocks, even when free of errors,
will result into wrong values.

For example, let’s suppose that as a consequence of a bit error the DC coefficient for a Y block is
interpreted as 1500 instead of 10; this means that the luminance value will be extremely high and
possibly will saturate the output range; regardless of the other (AC) coefficients in the same 8x8
block, the block will be rendered with a uniform color (exactly what color is codec-dependent).

The subsequent block will start from the same brightness level (plus its own DC value); it will
likely be rendered as out of range as well. The same happens from now to all remaining blocks,
hence the image appears of a uniform color from this point on.

It is interesting to note that, save for the damaged block, all pixel information is still present but is
simply rendered incorrectly.

The same type of corruption can result into various degrees of high or low brightness or, if the error
happens to Cb/Cr blocks, weird colors can appear.

It is actually very common that more than one block is affected at the same time, so both Y and
Cb/Cr get corrupted.

Alignment errors
A possible and frequent effect of bit errors is that blocks are terminated early; this is somewhat
codec-dependent, as the JPEG standard does not describe the behavior in case of impossible
situations like an undeclared Huffman code or more than 64 coefficients. Anyways, it is often the
case that in place of a number of original blocks, the decoder produces more of them, also
disrupting the sequence between Y and C (note that there is no way to distinguish them other than
counting).

Repairing corrupted JPEG images – V2.1 – Sep-23 16/18

By the time the decoder recovers the correct sequence and block order (if it does!), the rows will
certainly be misaligned, like in the image below:

AC errors
AC coefficients in a block define the shapes present, i.e. the fine detail. A corrupted AC coefficient
may be visible or not, depending on its value. A small level of error checking is given by the hard
limit of 64 coefficients per block. However, the highest impact of an AC coefficient error is that it
can affect all subsequent coefficients if its length is decoded incorrectly; this can even extend to
subsequent blocks, and theoretically to a whole image (although it is very improbable).

Errors with Restart markers
When present, restart markers limit the extent of artifacts to a finite number of MCU; however it is
always possible that the restart marker itself is corrupted. In these cases, most codecs ignore data
until the next correct marker is found, so the only visual effect is that parts of lines are of a uniform
color; the overall shape is still correct and also colors are unchanged.

Header corruption
The first part of a JPEG image contains various sections that specify how to interpret stream data.

Repairing corrupted JPEG images – V2.1 – Sep-23 17/18

Errors in this area will generally result in unreadable images.

Copying the header from a similar but readable image should fix the issue.

Repairing corrupted JPEG images – V2.1 – Sep-23 18/18

	Repairing corrupted JPEG images with JPEG visual repair tool
	Fix colors
	Restart markers
	MCU back search
	Limitations

	Example of image repair
	Color correction
	Refinements
	Further advice

	(Essential) Introduction to the JPEG format
	JPEG image corruption
	DC level errors
	Alignment errors
	AC errors
	Errors with Restart markers
	Header corruption

